
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 06: Useful Haskell Syntax, HO Programming Continued
o Goodbye to Bare Bones Haskell: Built-in syntax for lists & tuples
o Lambda expressions and Beta-Reduction
o Let and Case Expressions

Reading: Hutton Ch. 4 & 7

You should be starting to look through the Standard Prelude in Appendix
B, particularly the list processing functions!

Useful Haskell Syntax: Built-In Types
We have used Bare Bones Haskell notation for Lists, Pairs, and Triples in order to
emphasize the importance of pattern-matching in defining functions. However,
enough is enough! Here is a more convenient syntax which is built into the basic
Haskell syntax (and not just implemented as functions in the Prelude):

BB Haskell Flesh and Blood Haskell

Useful Haskell Syntax: Built-In Types
We have used Bare Bones Haskell notation for Lists, Pairs, and Triples in order to
emphasize the importance of pattern-matching in defining functions. However,
enough is enough! Here is a more convenient syntax which is built into the basic
Haskell syntax (and not just implemented as functions in the Prelude):

BB Haskell Flesh and Blood Haskell

Built in to the Prelude exactly as we presented it:

Bool, True, False, &&, ||, not

Built in types Integer, Double,

Main> 5 + 2
7

Main> 2039482039848029348 * 2828383838
5768438039397438184032877624

Useful Haskell Syntax: Built-In Tuples
BB Haskell

Main> P 3 True
P 3 True

Main> (P 4 (P True (-9)))
P 4 (P True (-9))

Main> (T 3 5 9)
T 3 5 9
Main> (T 9 False 2)
T 9 False 2
Main> fst (P 3 True)
3
Main> snd (P 3 (P True 2))
P True 2

Main> toLeft (P 4 (P True (-9)))
P (P 4 True) (-9)

Main> p2T (P 4 (P True (-9)))
T 4 True (-9)

Useful Haskell Syntax: Built-In Tuples
BB Haskell Flesh and Blood Haskell
Main> P 3 True
P 3 True

Main> (P 4 (P True (-9)))
P 4 (P True (-9))

Main> (T 3 5 9)
T 3 5 9
Main> (T 9 False 2)
T 9 False 2

Main> (3,True)
(3,True)

Main> (4,(True,(-9)))
4 (True,(-9))

Main> (3,5,9)
(3,5,9)
Main> (9,False,2)
(9,False,2)
Main> fst (3,True)
3
Main> snd (3,(True,2))
(True,2)

Main> toLeft (4,(True,(-9)))
((4,True),-9)

Main> p2T (4,(True,(-9)))
(4,True,-9)

Main> (2,3,True,5,’a’,7,4,”hi”,5)
(2,3,True,5,’a’,7,4,”hi”,5)

Provided in
Prelude

Tuples can be
any length,
but fst and
snd only work
on pairs.

Useful Haskell Syntax: Built-In Lists
BB Haskell Flesh and Bones Haskell

Built in as part of syntax!

Main> []
[]
Main> 3:9:[]
[3,9]
Main> 3:[9]
[3,9]

Main> [3,9]
[3,9]

Main>(Cons 3 (Cons 9 Nil))
Cons 3 (Cons 9 Nil)

Main> head (Cons 3 (Cons 9 Nil))
3

Main> tail (Cons 3 (Cons 9 Nil))
Cons 9 Nil
Main> length (Cons 3 (Cons 9 Nil))
2

Main> head [3,9]
3
Main> tail [3,9]
[9]

Main> length [3,9]
2

Provided in
Prelude

Useful Haskell Syntax: Built-In Lists
Start to become familiar with the list-processing functions in the Prelude,
there are many useful functions already defined! See Hutton pp.285 – 287.

Main> [0,1,2] ++ [3,4]
[0,1,2,3,4]
Main> last [0,1,2,3,4]
4

Main> init [0,1,2,3,4]
[0,1,2,3]

Main> take 3 [0,1,2,3,4]
[0,1,2]
Main> drop 3 [0,1,2,3,4]
[3,4]
Main> takeWhile (<3) [0,1,2,3,4]
[0,1,2]
Main> dropWhile (<3) [0,1,2,3,4]
[3,4]

Many more advanced functions can be found in Data.List.

Main> splitAt 3 [0,1,2,3,4]
([0,1,2],[3,4])
Main> replicate 5 1
[1,1,1,1,1]

Main> [0,1,2] ++ [3,4]
[0,1,2,3,4]

Main> reverse [0,1,2,3,4]
[4,3,2,1,0]
Main> map (^2) [0,1,2,3,4]
[0,1,4,9,16]
Main> filter even [0,1,2,3,4]
[0,2,4]
Main> concat [[0],[1,2],[3,4]]
[0,1,2,3,4]

Useful Haskell Syntax: Characters and Strings
Characters (Hutton p.282)

Main> 'a'
'a'
Main> ['h','i','!']
"hi!”

Main Data.Char> isLower 'a'
True
Main Data.Char> isUpper 'a'
False
Main Data.Char> isAlpha 'a'
True

Main Data.Char> isDigit 'a'
False
Main Data.Char> ord 'a'
97

Main Data.Char> chr 97
'a'
Main Data.Char> digitToInt '9'
9
Main Data.Char> intToDigit 4
'4'
Main Data.Char> toUpper 'a'
'A'
Main Data.Char> toLower 'A'
'a'
Main Data.Char> nextChar 'a'
'b'

Useful Haskell Syntax: Characters and Strings
Strings are simply lists of Characters (Hutton p.282)

Main> ['h','i','!']
"hi!”

Main> "hi " ++ "there" ++ "!"
"hi there!"

Main> "hi there" !! 3
't'

Main> take 5 "hi there!"
"hi th”

Main> words "hi there!"
["hi","there!"]

Main> import Data.Char
Main Data.Char> map toUpper "hi there!"
"HI THERE!"

Any list function can be used on
Strings. Check out Data.List!

This nifty function is provided in
the Prelude

Case Expressions
A very useful kind of conditional expression is the case expression:

case expression of pattern -> result
pattern -> result
pattern -> result
...

In other languages, the case statement is an alternative to a long nested if-
then-else, but in Haskell (of course!) it is more powerful, as it does pattern
matching:

describe :: [a] -> String
describe [] = "empty"
describe [x] = "singleton"
describe _ = "big!"

*Main> describe [4]
"singleton"

describe :: [a] -> String
describe xs =

case xs of [] -> "empty"
[x] -> "singleton"
_ -> ”big!"

Case Expressions
This solves the problem that lambda expressions can pattern match, but
not do multiple patterns:

describe :: [a] -> String
describe = \xs -> case xs of

[] -> "empty"
[x] -> "singleton"
_ -> ”big!"

Beta Reduction and Let Expressions

Recall: a lambda expression represents an anonymous function:

makePair :: a -> b -> (a,b)
makePair x y = (x,y)

makePair x = \y -> (x,y)

makePair = \x -> \y -> (x,y)

Main> makePair 3 True
(3,True)

By referential transparency, we can simply use the lambda expression and apply it
directly to arguments:

Main> (\x -> \y -> (x,y)) 3 True
(3,True)

Beta Reduction and Let Expressions
We will study this much more in a few weeks, when we start to think about how
to implement functional languages, but for now, we just define the concept of
Beta-Reduction, which is simply substituting an argument for its parameter:

((\x -> <expression>) <argument>)

=> <expression> with x replaced by <argument>

Examples:

Main> (\x -> (x,x)) 4
(4,4)
Main>(\x -> [3,x,9]) 4
[3,4,9]
Main>(\x -> Just x) "hi"
Just "hi"
Main>(\x -> 5) 6
5

Main> (\x -> (\y -> (x,y))) 5 True
(5,True)
Main>(\x y -> [3,x,y]) 4 9
[3,4,9]

Main>(\x y -> \z -> [x,y,z]) 2 4 9
[2,4,9]
Main> (\x -> (\x -> (x,x))) 5 True
??

Beta Reduction and Let Expressions
We will study this much more in a few weeks, when we start to think about how
to implement functional languages, but for now, we just define the concept of
Beta-Reduction, which is simply substituting an argument for its parameter:

((\x -> <expression>) <argument>)

=> <expression> with x replaced by <argument>

Examples:

Main> (\x -> (x,x)) 4
(4,4)
Main>(\x -> [3,x,9]) 4
[3,4,9]
Main>(\x -> Just x) "hi"
Just "hi"
Main>(\x -> 5) 6
5

Main> (\x -> (\y -> (x,y))) 5 True
(5,True)
Main>(\x y -> [3,x,y]) 4 9
[3,4,9]

Main>(\x y -> \z -> [x,y,z]) 2 4 9
[2,4,9]
Main> (\x -> (\x -> (x,x))) 5 True
(True,True)

Why??

Scope in Haskell
The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>
Main> x = 4
Main> x
4

In Java there are several kinds of scoping rules.....

Digression: Scope in Java
The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>
Main> x = 4
Main> x
4

In Java there are several kinds of scoping rules.....

Digression: Scope in Java
The scope of a variable (e.g., local variable, parameter) is the region of the
program where it is legal to refer to that variable.

Main> x

<interactive>:14:1: error: Variable not in scope: x
Main>
Main> x = 4
Main> x
4

In Java there are several kinds of scoping rules.....

Scope in Let Expressions
The scope of a lambda parameter is the expression to the right of the ->

(\x -> <expression>)

To find the parameter associated with an instance of a variable in the expression,
look for the closest enclosing binding of the variable:

(\x -> \ys -> (length (take x ys)))

Scope of x

Scope in Let Expressions: Hole in Scope
To find the parameter associated with an instance of a variable in the expression, look for the
closest enclosing binding of the variable:

(\x -> \ys -> (length (take x ys)))

Some weird things can happen when there is more than one occurrence of the same variable:

Main> (\x -> ((\x -> (take x [1,2,3,4,5])) 3) ++ x) [7]
[1,2,3,7]

Main>(\x -> (\x -> (x,x))) 5 True
(True,True)

Hole in scope of outer x

Digression: Scope in Java
Java allows multiple declarations of the same variable if one is a field and one is a local variable
(either a parameter or a local variable), creating a hole in the scope of the field declaration:

Digression: Scope in Java
But Java does NOT allow multiple declarations (and hence avoids the hole in scope issue)
for two local variables:

Digression: Scope in Java
But Java does NOT allow multiple declarations (and hence avoids the hole in scope issue)
for two local variables:

Digression: Scope in C
C allows multiple declarations without many restrictions:

Let Expressions in Haskell
In Haskell we create local variables using let:

(let x = <expr1> in <expr2>)

cylinder r h =
let sideArea = 2 * pi * r * h

topArea = pi * r ^2
in sideArea + 2 * topArea

let sq x = x * x in (sq 5, sq 3, sq 2)

=> (25,9,4)

let x = 5
in let y = 2 * x

in let z = x + y
in (\w -> x * y + z) 10

=> 65

Scope of local variables

Equivalent to a lambda application:

((\x -> <expr2>) <expr1>)

Except that you can have multiple
bindings in the same let.

Let Expressions in Haskell
Haskell let’s you define local variables any time you want with let (and where),
and therefore hole in scope issues become relevant.

Notice the enormous flexibility of Haskell and the referential transparency
principle: You can use these kinds of expressions nearly anywhere!

(let sq = (\x -> x*x) in \x -> (x,sq x)) 5

=> (5,25)

(\x -> case x of
1 -> \x -> x + 1
2 -> \x -> x * 2
_ -> \x -> x) 2 6

=> 12

